
Outline
Crash course on Assembly Language

Something more
Reversing in practice

Malware Reverse Engineering

Andrea Mambretti (mambro007@gmail.com)

Politecnico di Milano

October 8, 2012

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 1 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Crash course on Assembly Language
Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

Something more
Program layout in memory
Function and call convention

Reversing in practice
Things to know
Available tools
Avoid reversing: how to
Conclusion

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 2 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(1) How is the IA made?

I The processor has 32 bits internal registers to manage and
execute operations on data
They are EAX, EBX, ECX, EDX, ESI, EDI, EBP, EIP and ESP

I Among them we identify EAX, EBX, ECX, EDX are for
general purpose

I EBP (BP = base pointer) and ESP (SP = stack pointer) are
the stack bounds

I EDI and ESI are extra-registers

I EIP (IP = instruction pointer) is the register that contains the
address of the next instruction

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 3 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(2) How is the IA made?

I The register name system is a
porting from 16-bit IA where the
registers were called AX, BX and
so on.
”E” means extended. Without it
we consider the corrisponding
16-bit register
There’s also the possibility to use
AX,BX,CX,DX such as 8-bit
registers. For example we can use
AX as AH and AL that mean
higher and lower 8 bits of AX

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 4 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(1) What about EFLAGS?

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 5 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(2) What about EFLAGS?

I It’s another 32-bit register

I Only 8 bits out of 32 are of interest for us. The others are
either for the kernel mode function or are of little interest for
programmers

I The 8 bits are called flags. We consider them singularly. They
are boolean (true/false)

I The meaning of each bit is different. They represent overflow,
direction, interrupt disable, sign, zero, auxiliary carry, parity
and carry flags

I Since they represent information about the instruction last
executed, they change at every execution step. They are
VERY important for the control flow of the program

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 6 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

Syntax

I In the assembly world we can find two main syntaxes: the
AT&T and the Intel

I AT&T syntax is used by all UNIX program (e.g. gdb)

I Intel syntax is used by Microsoft programs (IDApro and
others)

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 7 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(1) Differences in the notation

I Consider the following operation:
”move the value 0 to EAX”

I AT&T:
mov $0x0,%eax

I Intel:
mov eax, 0h

I Comments:
I As you can see in AT&T syntax the destination is the second

operand instead as in the Intel syntax
I In the AT&T syntax the register are denoted with % and the

immediate/costant with $. In the Intel syntax these tokens are
not used.

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 8 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(2) Differences in the notation

I Consider this new operation:
”move the value 0 to the address contained in EBX+4”

I AT&T:
mov $0x0,0x4(%ebx)

I Intel:
mov [ebx+4h],0h

I Comments:
I This case shows how the deferentiation is done in assembly
I In AT&T we use parenthesis. In the Intel syntax we have to

use square brackets
I The way to manage the offset is another syntax difference. In

the first case we have to put it out of the parenthesis in the
second one inside the square brackets

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 9 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(1) Basic instructions overview

I Every processor has a huge instruction set (see Intel Manual1)

I A subset of the whole instructio set is usually processor
dipendent

I We will focus on the other subset of instructions that is
common among the processors

I We will use the Intel syntax as it is the same syntax used in
IDApro by default

1http://www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 10 / 53

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(2) Basic Instruction MOV

I General: MOV destination, source
source can be an immediate, a register, a memory location
destination can be either a register or a memory location
NB: Every combination is possible except memloc to
memloc!!!It isn’t valid here and in all the instructions!!!

I With this instruction, as said in the example above, we move
a value from a source place to a destination. There are a ton
of different versions. They change in function of the operands
ex 32 bits operands, 16 bits operands, immediate to reg,
immediate to memory

I Examples

MOV eax, ebx MOV eax, FFFFFFFFh MOV ax, bx

MOV [eax],ecx MOV [eax],[ecx] NO!!! MOV al, FFh

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 11 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(3) Basic Instruction ADD

I General: ADD destination, source
source can be an immediate, a register, a memory location
destination can be either a register or a memory location
NB: The destination register has to be as big as at least the
source or greater

I With this instruction we can add a value from source to the
destination operand and put the new value inside the
destination

I Examples

ADD esp, 44h ADD eax, ebx ADD al, dh

ADD edx, cx ADD [eax],[ecx] NO!!! ADD [eax],1h

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 12 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(4) Basic Instruction SUB

I General: SUB destination, source
source can be an immediate, a register, a memory location
destination can be either a register or a memory location
NB: The destination register has to be as big as at least the
source or greater

I With this instruction we can subtract the value source from
the destination operand and put the new value inside the
destination

I Examples

SUB esp, 33h SUB eax, ebx SUB al, dh

SUB edx, cx SUB [eax],[ecx] NO!!! SUB [eax],1h

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 13 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(5) Basic Instruction MUL

I General: MUL Operand
Operand can be an immediate, a register, a memory location

I With this instruction we can multiplies Operand by the value
of corresponding byte-length in the EAX,AX,AL register

OperandSize: 1 byte 2 bytes 4 bytes

Other Operand AL AX EAX

Higher Part of result: AH DX EDX

Lower Part of result: AL AX EAX

I Examples

OperandSize: 1 byte 2 bytes 4 bytes

Immediate MUL 44h MUL 4455h MUL 44556677h

Register MUL cl MUL dx MUL ebx

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 14 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(6) Basic Instruction DIV

I General: DIV Operand
Operand can be an immediate, a register, a memory location

I With this instruction we can divide the value in the dividend
register(s) by ”Operand”

OperandSize: 1 byte 2 bytes 4 bytes

Dividend AX DX:AX EDX:EAX

Remainder AH DX EDX

Quotient AL AX EAX

I Examples

OperandSize: 1 byte 2 bytes 4 bytes

Register DIV bl DIV bx DIV ebx

Immediate DIV 66h DIV 6677h DIV 66778899h

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 15 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(7) Basic Instruction CMP

I General: CMP Operand 1, Operand 2

I This instruction performs a subtraction between two operands
and sets the flags, it doesn’t store the result

I Examples

CMP eax, ebx CMP eax, 44BBCCDDh CMP al, dh

CMP al, 44h CMP ax,FFFFh CMP [eax],4h

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 16 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(8) Basic Instruction JMP

I General: JMP address

I This instruction is called
unconditional jump and when is
executed put in the eip (the next
instruction address) the address
passed as operand. We say that
the execution jumps to address
and it’s unconditional because
always the execution jump.

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 17 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(9) Basic Instruction JZ,JNZ and so on

I General: JX address
X ∈ {O,NO, S ,NS ,E ,Z ,NE ...}

I This set of instruction are called
conditional jump. It means that
the execution will go to address if
and only if the specific flag of the
condition jump given is verified.
For example: jz jumps if zero flag
is 1 if no is not taked

2

2http://www.unixwiz.net/techtips/x86-jumps.html

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 18 / 53

http://www.unixwiz.net/techtips/x86-jumps.html

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

(10) Basic Instruction INT

I General: INT VALUE

I VALUE is the software interrupt that should be generated
(0-255)

I Famous values are 21h for call service under windows and 80
for linux

I look the manual for the other

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 19 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Overview on the common 32-bit Intel Architecture (IA)
Overview on different syntaxes
Basic Instructions
x86 64

How much is different x86 64 from x86?

I The prefix of the register is r instead of e so we have (rip, rax etc.)
I There are 8 new registers (r8 to r15)
I each of them can be consider at 8, 16, 32, 64 bits

with X ∈ {8..15} we have

bits 8 16 32 64

reg rXb rXw rXd rX

I for better syntax information look at
http://www.x86-64.org/documentation/assembly.html

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 20 / 53

http://www.x86-64.org/documentation/assembly.html

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Program layout in memory
Function and call convention

Different Binary File Format

I PE (Portable Executable): This kind of binary file format is
used by Microsoft binary executable.

I ELF: This is the common binary format for Unix, Linux,
FreeBSD and others

I Other

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 21 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Program layout in memory
Function and call convention

How a program is seen in memory in linux (ELF)

Executable Description

.bss This section holds uninitialized data that contribute to the program’s memory image.
By definition, the system initializes the data with zeros when the program begins to run.

.comment This section holds version control information.

.data/.data1 These sections hold initialized data that contribute to
the program’s memory image

.debug This section holds information symbolic debugging.

.text This section holds the ”text,” or executable instructions, of a program.

.init This section holds executable instructions that contribute to the process initialization code.

That is, when a program starts to run, the system arranges to execute the code in this
section before calling the main program entry point (called main for C programs).

.got This section holds the global offset table.

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 22 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Program layout in memory
Function and call convention

How a program is seen in memory in windows (PE)

Executable Description

.text Contains the executable code

.rdata Holds read-only data that is globally accessible within
the program

.data Stores global data accessed throughout the program

.idata Sometimes present and stores the import function information;
if this section is not present, the import function information
is stored in the .rdata section

.edata Sometimes present and stores the export function information;
if this section is not present, the export function information
is stored in the .rdata section

.pdata Present only in 64-bit executables and stores
execption-handling information

.rsrc Stores resources needed by the executable

.reloc Contains information for relocation of library files

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 23 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Program layout in memory
Function and call convention

A General Schema

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 24 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Program layout in memory
Function and call convention

Function

I The concept of function in assembly is the same of the
common function in almost all the programming languages

I Is a piece of code that receive data from the caller a return
some value after the elaboration

I Differently from all high level languages the way to pass
parameters to a function can be done in more than one way

I Is different also the way how to call a specific function

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 25 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Program layout in memory
Function and call convention

Function, An example

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 26 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Program layout in memory
Function and call convention

Call Convention

I It’s the way how a program receives parameters,how a
function returns its return value and who cleans the stack

I There are different implementation of the Call Convention
that dictates exactly where a caller should place any
parameters that a function requires

I Everything is dipendent by the compiler(gcc/g++, visual
studio c++ etc.) and by the high-level language from which
the assembly comes from (c, c++, visualbasic and so on)

I Let’s look at some of those

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 27 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Program layout in memory
Function and call convention

The C Calling Convention

I It’s the default calling convention used by most C compilers
for the x86 arch

I When a compiler doesn’t use this convention we can force it
using the modifier cdecl

I It specifies that the caller place parameters to a function on a
stack in the right to left order and that the caller remove the
parameters from the stack after the called function completes

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 28 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Program layout in memory
Function and call convention

The C Calling Convention example

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 29 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Program layout in memory
Function and call convention

The Standard Calling Convention

I This is the Miscrosoft Calling Convention standard

I When a compiler doesn’t use this convention we can force it
using the modifier stdcall

I Also here the parameters are passed all using only the stack,
the difference is that the called function is responsible for
clearing the function parameters from the stack when the
function has finished. To do this the function has to know the
right number of parameter passed. It’s valid only with function
with fixed number of parameters so such as printf can’t use it.

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 30 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Program layout in memory
Function and call convention

fastcall Convention for x86

I It’s a variation of the stdcall convention, the fastcall calling
convention passes up to two parameters in CPU registers
rather than on the program stack.

I The Microsoft Visual C/ C++ and GNU gcc/g++ compilers
recognize the fastcallmodifier in function declaration.

I In this case the first two parameters are passed in the register
(ECX and EDX), the remaining parameters are place on the
stack in right to left order similar to stdcall.The function is
responsible for removing parameters from the stack when they
return to their caller.

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 31 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Program layout in memory
Function and call convention

C++ Calling Convention

I This Call Convention is for non static member function in
c++ to male available the this pointer-

I The address of the object used to invoke the function must be
supplied by the caller and is therefore provided as a parameter
when calling nonstatic member functions.

I The c++ language standard does not specify how this should
be passed to nonstatic member function

I So here arise the problem that every c++ compiler does
something different from another one

I LOOK TO THE SPECIFIC COMPILER WHEN YOU
REVERSE C++ PROGRAM!!!

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 32 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Program layout in memory
Function and call convention

Other Calling Convention

I A Ton of other convention are implemented...They are often
language-, compiler- and CPU-specific.

I Actually all the people that write assembly by hand use the
own convention...

I ...Try you to write some little program

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 33 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

Background of a good Reverser

I Assembly Language

I Compilers

I Virtual Machine and Bytecodes (ex Java)

I Operative Systems

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 34 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

Tools of a good Reverser

I System-Monitoring Tools

I Disassemblers

I Debuggers

I Decompilers

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 35 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

IDA Pro

I Type: Disassembler

I Description: IDApro, without doubts, is the most powerful
reverse tool. I will try to resume all the properties of it. It has
three view of the code (graph, text and hex view), a smart
version of strings that filter the output to allow a better look
at it, two version of the toolbar (advanced and basic), either
auto finds data structures inside the code or you can specify it
(the same for enums), import/export windows, hexrail
extension to get a c-like code of some function, you can
specify more than one external debugger to debug your
program and much more!

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 36 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

OllyDbg

I Type: Disassembler and Debugger

I Description: OllyDbg is a well-known Windows debugger, is
really useful on binary code analysis. With OllyDbg is very
simple patch the binary to get the desidered flaw of the
program. It’s really intuitive and you can get it for free online.

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 37 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

WinDbg

I Type: Kernel Debugger

I Description: This tool is provided by Microsoft, we can use it
to debug drivers, applications and services on Windows
systems.

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 38 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

PEview

I Type: Portable Executable(PE) viewer

I Description: This program is used actually to get a first idea
of what is going on. It allows us to see inside the header of
the file and understand things such as it’s packed or not, it
has the resource section with something bad, which are the
imports (that’s equal to say ”What it will try to do in theory
on our system”)

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 39 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

Wireshark

I Type: Network protocol analyzer

I Description: WS is a traffic sniffer with a huge set of
protocol filter that gives us the full control of what goes on
the network. Why do we need it? Actually the reverse
engineering process is joint with a dynamic analysis of the
malware that maybe uses the network to communicate with
remote servers or other bad things. Using wireshark, we can
catch and look into every packet that flows in the network.

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 40 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

Strings

I Type: Binary analyzer

I Description: Strings is a very small program but it can
provide us very important information. It looks inside the
binary and prints all the printable charaters on the screen.
The strings of the binary can be very usuful to understand
what is the binary. NB: Ok malware writers are not stupid
they will try to put wrong strings inside but if you look at
things such as ”9.23.111.43” maybe you can suppose that is
a ipv4 address and look at it

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 41 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

Snort

I Type: Intrusion detection system

I Description: It’s an open source network intrusion prevention
and detection system. We can use it to take under control
some event during the execution of a malware. It will give us
fast information about new event coming from the network
such as a botmaster that send something to our infected
test-machine

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 42 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

Tor

I Type: Proxy for Anonymity

I Description: Tor allows a ton of things, everyone is strictly
connected to the Anonymity. The program is a simple proxy
that get you access to the ”hidden internet”. Tor is so
anonymous that bad guys, of course, use it to do bad things.
Some malware works using tor so we need it to try to
undestand its behaviour inside the hidden internet.

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 43 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

UPX (Ultimate Packer for Executable)

I Type: Packer/Unpacker

I Description: With this program we can detect and unpack
malware that use upx packing to avoid antivirus detection. It
works on a huge collection of binary format and work on a lot
of OS

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 44 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

Regshot

I Type: Windows register analyzer

I Description: This tool is designed to make a really simple
thing. It allows you to do a snapshot of a the whole set of
registers in two different moment and it gives us the
differences between snapshot one and two. The result can be
used to understand which register are touched by a malware

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 45 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

Process Monitor

I Type: Monitor

I Description: Process Monitor is an advanced monitoring tool
for Windows that shows real-time file system, Registry and
process/thread activity. It combines the features of two legacy
Sysinternals utilities, Filemon and Regmon, and adds an
extensive list of enhancements including rich and
non-destructive filtering, comprehensive event properties such
session IDs and user names, reliable process information, full
thread stacks with integrated symbol support for each
operation, simultaneous logging to a file, and much more. Its
uniquely powerful features will make Process Monitor a core
utility in your system troubleshooting and malware hunting
toolkit.

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 46 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

Process Explorer

I Type: Monitor

I Description: This Program gives us information about either
file or directory that are opened by a specific process. The
unique capabilities of Process Explorer make it useful for
tracking down DLL-version problems or handle leaks, and
provide insight into the way Windows and applications work.

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 47 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

Process Hacker

I Type: Monitor

I Description: Process Hacker is a free and open source
process viewer. This multi-purpose tool will assist you with
debugging, malware detection and system monitoring. It
includes powerful process termination, memory
viewing/editing and other unique and specialized features.

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 48 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

Resource Hacker

I Type: Resource section manager

I Description: Resource HackerTM is a freeware utility to
view, modify, rename, add, delete and extract resources in
32bit & 64bit Windows executables and resource files (*.res).
It incorporates an internal resource script compiler and
decompiler and works on all (Win95 - Win7) Windows
operating systems.

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 49 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

Reverse on Malware and Antireversing Techniques

Today’s malware and commercial program use techniques against
Reversing

I Anti-Disassembly (Linear and Flow Oriented Disassembly)
I Jump instructions with the same target
I Jump instruction with a Costant Condition
I Impossible disassembly

I Anti-Debugging
I They understand that are executed in a debugger and change

their behaviour either crashing itself, the debugger or totally
doing other stuff

I Anti-Virtual Machine Techniques

I Packers and Unpacking

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 50 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

Bibliography

I The Ida Pro Book 2 Edition

I The Shellcoder Handbook

I Reverse Engineering Code with IDA Pro

I Secrets of Reverse Engineering

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 51 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

Conclusion

I Software Reverse Engineering is a very powerfull instrument
but it requires a lot of lowlevel-knowledge

I Appling this technique on malware analysis is not optional if
we want undestand how the malware works

I Can be very time consuming and if all the tools used for the
analysis are not setted correctly there’s no way to reverse the
malware

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 52 / 53

Outline
Crash course on Assembly Language

Something more
Reversing in practice

Things to know
Available tools
Avoid reversing: how to
Conclusion

End

I Thanks Folk...Questions?

Andrea Mambretti (mambro007@gmail.com) Malware Reverse Engineering 53 / 53

	Crash course on Assembly Language
	Overview on the common 32-bit Intel Architecture (IA)
	Overview on different syntaxes
	Basic Instructions
	x86_64

	Something more
	Program layout in memory
	Function and call convention

	Reversing in practice
	Things to know
	Available tools
	Avoid reversing: how to
	Conclusion

