CryptoMythbusters: Miti e possibilità pratiche della crittografia moderna

Alessandro Barenghi

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano

barenghi - at - elet.polimi.it

31 marzo 2014

Overview

Di cosa parleremo oggi?

- La quantità di informazione stoccata/in movimento nel mondo moderno è impressionante
- La confidenzialità e riservatezza di questa marea di bit è un serio problema
- Utilizzare tecniche crittografiche è una soluzione efficiente, a patto che si eviti l' effetto "cargo cult"
- Puntiamo a far saltare un po' dei "sentito dire" e del FUD^a riguardanti la crittografia

ahttps://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt

Overview

Crittografia senza chiave

E' possibile avere confidenzialità senza chiavi?

- Mito: E' possibile avere un sistema che cifra dati garantendo confidenzialità senza una chiave.
- Esempio tipico: password manager che salva le password in modo sicuro senza chiedervi una master password
- Il risultato è un blocco di bit, apparentemente informe, salvato su disco fisso
- Claim: il grumo di dati non è intelligibile, quindi è sicuro

Crittografia senza chiave

E' possibile avere confidenzialità senza chiavi?

- Mito: E' possibile avere un sistema che cifra dati garantendo confidenzialità senza una chiave.
- Esempio tipico: password manager che salva le password in modo sicuro senza chiedervi una master password
- Il risultato è un blocco di bit, apparentemente informe, salvato su disco fisso
- Claim: il grumo di dati non è intelligibile, quindi è sicuro

Crittografia senza chiave

Back to 1883

- Per decodificare il grumo di dati basta avere una copia del programma (non utile, se voglio che molti usino il programma)
- Assioma fondamentale della crittografia: il metodo con cui si cifra è assunto pubblico (Auguste Kerchoff, 1883)
- E' segreto un solo parametro, la chiave
- La difficoltà di rompere un sistema di cifratura, è solamente quella di trovare/indovinare la chiave

Nano-tutorial di crittografia

Cifrario Simmetrico

- Esiste una sola chiave k_{sym}
- La chiave è nota solo a chi può accedere ai dati
- Si usa sia per cifrare i dati, che per decifrarli
- Molto efficiente (100MB/ -10GB/s)

Cifrario Asimmetrico

- Esistono due chiavi k_{pub}, k_{pri}
- Non è possibile ricavare in tempi pratici k_{pub} da k_{pri}
- E' possibile decifrare il cifrato di k_{pub} solo con k_{pri}
- Circa 100 volte più lento di un cifrario simmetrico

Livello di sicurezza

Quantificazioni pratiche

- Quanto robusta è la cifratura in pratica? Dipende da quanto è difficile indovinare la chiave
 - Cifrario simmetrico: n bit di chiave $\rightarrow 2^n$ tentativi
 - Cifrario asimmetrico: sapendo k_{pub} è "più facile" indovinare k_{pri} : con n bit di chiave $\rightarrow 2^{\frac{n}{m}}$ tentativi (m dipende dal cifrario)
- Facile fare crescere lo sforzo di calcolo oltre i limiti del fattibile
- Limiti fisici della computazione intervengono a un certo punto
- Lunghezze di chiavi scelte tenendo conto dell' evoluzione delle capacità di calcolo^a

ahttp://www.keylenght.com

Livello di sicurezza

Quanta energia mi serve per indovinare la chiave?

	Lunghezza della chiave [b]			Acqua
Sicuro?	Simm.	Asimm.	Asimm.	scaldata
	(AES)	(RSA)	(EC*)	$20C \to 100C$
NO	35	284	64	Cucchiaino da caffè
no	64	803	117	Piscina (50m)
sì	80	1233	148	Pioggia 1yr Olanda
Sì	114	2541	215	Tutta

 Convertendo l' intera massa dell' universo osservabile in energia arriviamo a indovinare delle chiavi da 256b Simm., 15489b Asimm. (RSA), 494b Asimm. EC*

The NSA took my baby away

- Dopo la fuga di informazioni consentita da Ed Snowden, abbiamo le prove di un programma di sorveglianza su scala mondiale
- Mito: "NSA riesce a decifrare il traffico SSL!" e "NSA dedica attivamente sforzi, con successo, a rompere crittografia forte"
- Ma quindi cifrare i dati è inutile?

The NSA took my baby away

- Dopo la fuga di informazioni consentita da Ed Snowden, abbiamo le prove di un programma di sorveglianza su scala mondiale
- Mito: "NSA riesce a decifrare il traffico SSL!" e "NSA dedica attivamente sforzi, con successo, a rompere crittografia forte"
- Ma quindi cifrare i dati è inutile?

Ed Snowden, 10/3/2014

The bottom line, I have repeated this again and again, is that encryption does work. We need to think of encryption not as this sort of arcane black art. [...] it is a defense against the dark arts for the digital realm.

- Cifrario robusto → cifrario di cui sappiamo che trovare la chiave implica una quantità di risorse troppo alta
- ullet Importante la scelta di chiavi solide o "difficile" da indovinare
 - ightarrow estratta a caso tra le possibili chiavi per quel cifrario

Casuale in che senso?

Courtesy of XKCD: http://xkcd.com/1210/

Ed Snowden, 10/3/2014

[...] "we know that encryption algorithms we are using today work", typically it is the Random Number Generators that are attacked [...]

RNG FAILs

- Se l' RNG che decide la chiave è predicibile, non devo indovinarla!
- Dual_ERBG, standardizzato contiene una backdoor
 - Falla nota 4 anni prima del Datagate
- Debian ha usato un RNG con solo 16 bit di entropia per anni!

RNG sicuri

- Un RNG puramente algoritmico si ripeterà a un certo punto
- /dev/random sotto Linux sfrutta la lettura di parametri fisici della macchina
- Molto difficile predirlo, ma può far attendere prima di produrre dati

This is my RNG. There are many like it, but this one is mine.

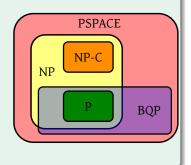
- Interfaccia USB, 3MB/s http://goo.gl/xrgaUp
- Interfaccia Seriale 9600B/s http://goo.gl/6LBXcz

Quantum Computers

I QC rompono tutta la crittografia moderna?

- Alcuni computer quantistici sono ormai commerciali: http://www.dwavesys.com/
- Sono in grado di effettuare alcuni calcoli per tutti i valori di un parametro a n bit in n operazioni
- Quindi, posso rompere qualunque cifrario: per trovare la chiave ci metto n esecuzioni anzichè 2ⁿ
- NSA ha computer quantistici, quindi è inutile cifrare!

Quantum Computers


I QC rompono tutta la crittografia moderna?

- Alcuni computer quantistici sono ormai commerciali: http://www.dwavesys.com/
- Sono in grado di effettuare alcuni calcoli per tutti i valori di un parametro a n bit in n operazioni
- Quindi, posso rompere qualunque cifrario: per trovare la chiave ci metto n esecuzioni anzichè 2ⁿ
- NSA ha computer quantistici, quindi è inutile cifrare!

Nano-tutorial di teoria della complessità

Classi di complessità: dato un input lungo n....

- P: Risolvo in n^k op.
- NP: Risolvo in n^k op., se indovino tutti gli if-else
- NP-C: Come risolvo lui, risolvo tutti gli NP
- PSPACE: Risolvo con al più n^k memoria letta-scritta
- BQP : Risolvo, con un QC, in n^k, "non sbagliando quasi mai"

Quantum Computers

In pratica

- Cifrari simmetrici: il problema di trovare la chiave è in NP-C
 - Miglior risultato su QC: passo da 2^n tentativi a $2^{\frac{n}{2}}$
 - Raddoppio la lunghezza della chiave, ed è fatta :)
- Cifrari asimmetrici attuali (f.i., RSA,DSA,ECDSA):
 - Hanno un algoritmo in BQP: n bit di chiave $\rightarrow n^k$ tentativi!
 - Troppo costoso aumentare la chiave a sufficienza
 - Soluzioni? Cambiare cifrari

Quantum Computers

Crittografia Post-Quantum

- La crittografia asimmetrica basata sulla difficoltà di fattorizzare interi/del logaritmo discreto cede con i QC
- Servono nuovi problemi difficili da usare come cifrario....
 - 1978: R. McEliece: cifrario basato sulla difficoltà di decodificare un dato con troppi errori
 - 1997: S. Goldwasser: cifrario basato su spazi vettoriali a coefficienti interi (Lattices)
- Se sono già resistenti ad attacchi con QC, perchè non li stiamo già usando?
 - Bassa efficienza: sono più lenti degli attuali cifrari asimmetrici
 - Chiavi molto grandi: circa 10× più grosse delle chiavi asimmetriche attuali, qualche MB alla peggio

Black-box security

- Recentemente è stato dimostrato essere possibile cifrare un programma in modo che non si comprenda cosa fa, ma lo si possa eseguire ugualmente
- Il tutto è stato riportato perfino da riviste tra cui Wired ^a
- Questo sistema è la risorsa definitiva del software proprietario!
- Possiamo scrivere un malware invulnerabile alle analisi perchè non verrà mai trovato!

^ahttp://www.wired.com/2014/02/cryptography-breakthrough/

Black-box security

- Recentemente è stato dimostrato essere possibile cifrare un programma in modo che non si comprenda cosa fa, ma lo si possa eseguire ugualmente
- Il tutto è stato riportato perfino da riviste tra cui Wired a
- Questo sistema è la risorsa definitiva del software proprietario!
- Possiamo scrivere un malware invulnerabile alle analisi perchè non verrà mai trovato!

^ahttp://www.wired.com/2014/02/cryptography-breakthrough/

Wait, Offuscamento perfetto, what?

- Il problema principale del mito precedente è cosa si intende per offuscamento perfetto
- Senso comune: ottenere un programma artificialmente contorto per evitare che si comprenda il senso di cosa fa guardando la sequenza di istruzioni
- Dato di fatto: dato sufficiente tempo e sufficienti sforzi, è sempre possibile capire cosa fa un programma come quello che abbiamo detto qui sopra
- Non c'è una difficoltà quantificabile, quindi qualcuno prima o poi ce la farà

Un primo tentativo...

- Il primo passo per l' offuscamento perfetto è stato chiedersi: cosa vogliamo ottenere?
- Primo tentativo : Virtual Black-Box Obfuscation
 - Alice riceve un programma offuscato Obf(P) da far girare sulla sua macchina
 - Bob può usare lo stesso programma solo mandando per posta cartacea gli input e ricevendo gli output
 - Obiettivo: Quando entrambi hanno finito di fare tutti i conti che vogliono, Alice non sa nulla più di Bob
- Entrambi possono invocare il programma quante volte vogliono e salvare tutte le coppie input-output

Not really...

... Con qualche problema

- 2001: Barak et al.: impossibile ottenere l' offuscamento Virtual Black-Box per programmi generici
- Come è possibile? Sketch della dimostrazione:
 - Il programma P da offuscare, se riceve KLAATUBARADANIKTO stampa thisisreallysecret, altrimenti non stampa nulla.
 - Terminato l'accesso al programma, Bob non è più in grado di dire se un input di P fa sì che P stampi thisisreallysecret.
 - Alice può ancora far girare Obf(P) e, anche se non sa come funziona, dire se un input fa sì che stampi thisisreallysecret
- Il fatto stesso che Alice abbia una copia del programma fa sì che lei sappia più di Bob

Virtual black box obfuscation in pratica

Sì, ma —

- La dimostrazione precedente fa vedere che non è possibile offuscare un programma piuttosto banale...
- Purtroppo, il programma in questione non è un' eccezione:
 - L'offuscamento non è possibile per la stragrande maggioranza dei programmi utili
- Una delle due eccezioni è sono i programmi che calcolano un output di solo bit dagli input
- Esempio tipico: programma che computa 0 o 1 a seconda che la password fornita sia corretta

Indistinguishability Obfuscation

Una nozione più debole

- L' articolo di Wired fa riferimento quindi a un offuscamento diverso: l' Indistinguishability Obfuscation
- Informalmente, due programmi P_1 e P_2 grossi all' incirca uguale e con lo stesso comportamento ai morsetti, $Obf(P_1)$ non si distingue da $Obf(P_2)$
 - non si distingue \rightarrow sono cifrati, devo fare 2^n calcoli
- Carino, ma... utilità pratica?
 - Cifrario simmetrico S con chiave k_{sym} , comportamento: trasforma un testo sensato in bytes pseudocasuali
 - Calcolo $Obf(S_{k_1})$, non si distingue da $Obf(S_{k_2})$:)
 - Distribuisco $Obf(S_{k_1})$, così tutti possono cifrare qualcosa
 - Solo io so decifrare, conoscendo k_1 : ottengo un cifrario asimmetrico da uno simmetrico!

Conclusioni

Cosa portare a casa

- No free lunch: no cifratura senza chiave
 - Se non c'è una chiave, e posso invertirla, è una codifica
- Algoritmi crittografici solidi lo sono perchè so quanto ci metto a romperli, ed è troppo
- I computer quantistici richiederanno di cambiare cifrari asimmetrici e una lunghezza di chiave doppia per i simmetrici
- ullet Offuscamento crittografico eq Offuscamento in senso comune
 - Difficoltà ben quantificata
 - Possibile totalmente solo per funzioni molto semplici
 - Indistinguishability obfuscation possibile per un generico programma