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Reconfiguration 

 The process of physically altering the location or 
functionality of network or system elements. 
Automatic configuration describes the way 
sophisticated networks can readjust themselves 
in the event of a link or device failing, enabling 
the network to continue operation. 

Gerald Estrin, 1960 

2



Outline 

•  A bird’s eye view on the 
Reconfigurable Computing 

•  FPGA

•  The roadmap
 
•  What’s missing 
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What’s next 

•  A bird’s eye view on the Reconfigurable 
Computing 
§  The RC dawn and the FPGA revolution
§  Some !FPGA architecture
§  The accademic efforts
§  Choose the optimal hardware platform for 

a given application
 
•  FPGA 
•  The roadmap 
•  What’s missing 
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Reconfigurable Computing 
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Reconfigurable Computing 

 Reconfigurable computing is defined as the study 
of computation using reconfigurable devices 

     Christophe Bobda, 2007 
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Such a definition!

7



8

The RC Dawn

•  The Estrin Fix-Plus Machine, 1959
•  The Ramming Machine, 1977
•  Hartenstein’s XPuter, 1980

•  mid-1980s: the FPGA revolution/era
§  The PAM Machine, SPLASH II, PRISM, 

Garp, DISC, DPGA
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Data Flow Machine (!FPGA)

•  The Pact XPP Device
•  The NEC-DRP Architecture
•  The picoChip Reconfigurable Device

•  PicoChip solution:
§  Array of heterogeneous processors
§  Communication flexibility between processors achieved through 

reconfigurable technology

Array Processing Element 

Switch Matrix 

Inter-picoArray Interface 
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The Academic Efforts

•  The Reconfigurable Architecture 
Workstation (RAW) - MIT

•  The Matrix Architecture - MIT
•  The Reconfigurable Multimedia Array 

Coprocessor (REMARC) - Stanford
•  MorphoSys -  University of California, 

Irvine 
•  Chimaera – Northwestern
•  PipeRench - CMU
•  RaPiD - University of Washington
•  Garp – UC Berkeley
•  Bee2- UC Berkeley



What are the drivers for this choice? 

•  Time: How long does it take to compute the 
answer? 

•  Area: How much silicon space is required to 
determined the answer? 

•  Costs: How much does it costs (performance, $)? 
•  Power: How much does it consume? 

•  Processor generally fixes computing area. Problem 
evaluated over time through instructions. 

•  FPGA can create flexible amount of computing 
area. Effectively, the configuration memory is the 
computing instruction.  
§  Flexibility means variety, which means different kinds 

of reconfiguration 
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Reconfiguration in everyday life 

Soccer 

Hockey

Football
(Complete – Static)

(Partial – Dynamic)

(Partial – Static)
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Reconfigurable Architectures Characterization 

•  SoC (System on Chip) 
§  Embedded Vs External 
§  Complete Vs Partial 
§  Dynamic VS Static 

•  SoMC (System on Multipe-
Chip) 
§  Embedded Vs External  
§  Complete Vs Partial 
§  Dynamic VS Static 

s 
t 
a 
t 
i 
c 

Partial Complete Embedded 

Complete/Partial Who 

(a) (b) (c) (d)
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Reconfiguration: some applicative scenarios 

Behavioral evolution
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Structural 

modification
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•  A bird’s eye view on the Reconfigurable 
Computing 

•  FPGA
§  Technology
§  CLB, Slice, LUT
§  Frame
§  Configuration bitstream

•  The roadmap 
•  What’s missing 

What’s next



Commercial FPGA Companies 

Lattice official webiste 
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Xilinx FPGA technology
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IOB IOB IOB IOB

CLB CLB

CLB CLB
IO
B

IO
B

IO
B

IO
B

Wiring Channels

Xilinx Programmable Gate Arrays

•  CLB - Configurable Logic 
Block

•  Built-in fast carry logic
•  Can be used as memory
•  Three types of routing

§  direct
§  general-purpose
§  long lines of various 

lengths
•  RAM-programmable

§  can be reconfigured
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Configurable Logic Blocks

•  CLBs made of Slices
§  sVirtex-E 2-slice
§  VIIP 4-slice

•  Slices made of LookUp Tables (LUTs)

•  LookUp Tables
§  4-input, 1 output functions
§ Newest FPGA 2 6-input 2 output

19



Simplified CLB Structure

Look-Up 
Table 
(LUT)

Q

QSET

CLR

D
MUX

CLB

20
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Lookup Tables: LUTs

•  LUT contains Memory Cells to implement small 
logic functions

•  Each cell holds ‘0’ or ‘1’ .
•  Programmed with outputs of Truth Table
•  Inputs select content of one of the cells as output




16-bit SR

flip-flop

clock

mux
y

q
e

a
b
c
d

16x1 RAM
4-input

LUT

clock enable

set/reset

3 Inputs LUT -> 8 Memory Cells!

SRAM

Static Random Access Memory!
SRAM cells!SRAM

3 – 6 Inputs!

Multiplexer MUX!
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Example: 4-input AND gate

A
B

C

D

O

A B C D O 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 0 

0 1 0 0 0 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 0 

1 0 0 0 0 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 0 

1 1 0 0 0 

1 1 0 1 0 

1 1 1 0 0 

1 1 1 1 1 

Q

QSET

CLR

D
MUXA

B

C

D

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

Configuration bits

O

0
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The Virtex CLB

2-Slice Virtex-E CLB
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Details of One Virtex Slice

Virtex-E Slice



Implements any Two 4-input Functions

4-input 
function

3-input 
function;

registered

Virtex-E Slice
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CLB

Switch Box
SLICE

TBUF

Y

X6766

75

74

SLICE_X66Y74

4-Slice VIIP CLB
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Interconnection Network

CLB SB

SB SB

CLB

SB

CLB SB CLB
Configurable Logic Blocks

Interconnection Network

I/O Signals (Pins)

Configuration 
bits 1

0

0

0
0

0
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Example 

CLB0 SB0

SB1 SB2

CLB1

SB3

CLB2 SB4 CLB3

Input1

Input2

Output
Input3

•  Determine the configuration bits for the following circuit 
implementation in a 2x2 FPGA, with I/O constraints as shown 
in the following figure. Assume 2-input LUTs in each CLB.

Q

QSET

CLR

D
Input1
Input2

Input3

Output
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CLBs configuration

Q

QSET

CLR

D
Input1
Input2

Input3

Output

CLB 1 CLB 2

Q

QSET

CLR

D
MUX

Input1
Input2

0

0

0

1

Configuration bits

O

1 Q

QSET

CLR

D
MUX

O
Input3

0

1

1

0

Configuration bits

Output

0
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Placement: Select CLBs

CLB0 SB0

SB1 SB2

CLB1

SB3

CLB2 SB4 CLB3

Input1

Input2

Output
Input3
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Routing: Select path

CLB0 SB0

SB1 SB2

CLB1

SB3

CLB2 SB4 CLB3

Input1

Input2

Output
Input3

Configuration bits

SB1

1

0

0

0
0

0

Configuration bits

SB4

0

0

0

0
1

0
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Configuration Bitstream

•  The configuration bitstream must include ALL 
CLBs and SBs, even unused ones

•  CLB0: 00011
•  CLB1: ?????
•  CLB2: 01100
•  CLB3: XXXXX
•  SB0: 000000
•  SB1: 000010
•  SB2: 000000
•  SB3: 000000
•  SB4: 000001
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The configuration bitstream

•  Occupation must be determined only on 
the basis of 
§  Number of configuration words
§  Initial Frame Address Register (FAR) value
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Frame and Configuration Memory

•  Virtex-II Pro 
§  Configuration memory is arranged in vertical 

frames that are one bit wide and stretch from 
the top edge of the device to the bottom

§  Frames are the smallest addressable segments 
of the VIIP configuration memory space
•  all operations must act on whole configuration frames.

"   Virtex-4 
"   Configuration memory is arranged in 

frames that are tiled about the device
"   Frames are the smallest addressable 

segments of the V4 configuration 
memory space
"   all operations must therefore act upon 

whole configuration frames



Some Definitions
•  Object Code: the executable active physical (either 

HW or SW) implementation of a given functionality

•  Core: a specific representation of a functionality. It is 

possible, for example, to have a core described in 
VHDL, in C or in an intermediate representation (e.g. 
a DFG)

•  IP-Core: a core described using a HD Language 
combined with its communication infrastructure (i.e. 
the bus interface)

•  Reconfigurable Functional Unit: an IP-Core that can 
be plugged and/or unplugged at runtime in an 
already working architecture


•  Reconfigurable Region: a portion of the device area 

used to implement a reconfigurable core
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Xilinx FPGA and Configuration Memory
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What’s next 

•  A bird’s eye view on the Reconfigurable 
Computing 

•  FPGA 
 
•  The roadmap 

§  The 90% – 10% Rule 
§  Programmable System on a Chip 
§  Multi-FPGA 
§  Complex heterogeneous adaptive systems 

•  What’s missing 
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The 90% – 10% Rule 

•  90% of the execution is spent in 10% of the code 
§  Inner loops in algorithms 
§  Computational intense code 

•  10% of the execution is spent in 90% of the code 
§  Exceptions 
§  User interaction 

•  The 10% computational intense code has to be 
executed as hardware on reconfigurable devices 

•  The 90% exception code is run as executable files 
on processors 
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Programmable System on a Chip 

•  No longer just a bunch of reconfigurable elements 

•  DSPs, GPP, reconfigurable elements, etc. etc... 
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Heterogeneous Multi-FPGA System 
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Complex heterogeneous adaptive systems 

•  Due to the complexity in the demand, the 
system has to be heterogeneous and able to 
autonomously adapt and evolve 
§  FPGAs 
§  DSPs 
§  GPP (Multi-cores) 

•  Adaptive systems learn how they can be used 
to address a particular problem  
§  Respond to user goals  
§  Build self-performance models 
§  Identify what they needs to learn 
§  Adapt to changing goals, resources, models, 

operating conditions 
§  Gracefully adapt to failures 
§  Optimize their own behavior  
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Intel Stellarton 

•  Heterogeneous Multicore 
§  An Intel Atom E6XX processor 

•  # Cores: 1 
•  # Threads: 2 
•  L2 Cache: 512 KB 

§  An Altera Field Programmable Gate Array 
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What’s next 

•  Basic Idea 
•  FPGA 
•  The roadmap 

•  What’s missing 
§  Design methodologies 
§  Runtime reconfiguration management 
§  Rationale behind DRESD 
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Design flow 

•  Dynamic reconfigurable embedded systems 
are gathering, an increasing interest from both 
the scientific and the industrial world 
§  The need of a comprehensive framework which 

can guide designers through the whole 
implementation process is becoming stronger 

•  There are several techniques to exploit partial 
reconfiguration, but.. 
§  Few approaches for frameworks and tools  to 

design dynamically reconfigurable systems 
§  They don’t take into consideration  both the HW 

and the SW side of the final architecture 
§  They are not able to support different devices 
§  They cannot be used to design systems with 

different architectural solutions 
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No EDA support 

•  To identify from an high-level or RT-Level 
specification how to define reconfigurable 
functional units 

•  To define which IP-Core has to become a 
reconfigurable functional unit 

•  To define interconnections among 
reconfigurable functional units 

•  To manage at runtime the swap of 
reconfigurable functional units 

•  To perform the actual swap of reconfigurable 
functional units and the FPGA reconfiguration 
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Runtime Reconfiguration Management 

•  The flexibility of a reconfigurable system 
comes from the possibility of downloading 
different hardware configurations onto the 
chip at different times 
§  Reconfiguration time overhead 
§  Memory usage to store the bitstreams 

•  There are different models of reconfiguration 
classified according to the following scheme 
(5W): 
§  who manages the reconfiguration 
§  where the reconfiguration controller is located 
§  when the configurations are generated 
§  which is the granularity of the reconfiguration 
§  what dimension (1D vs 2D) the reconfiguration operates 

46



DRESD
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Goals 

•  Exploit dynamic reconfigurability for different target 
reconfigurable architectures.  

•  Definition of a complete design flow (Brain to Bit) to process a 
specification to make it suitable for reconfigurable 
implementation 

•  Definition and implementation of a new generation of self 
reconfigurable architectures based on Linux 

•  Increase the reconfiguration performances via novel techniques, 
i.e. runtime reconfigurable cores relocation, reconfigurable cores 
identification, reconfigurable cores reuse 
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DRESD: innovative contributions 

•  Definition of a methodology for the design of dynamically 
reconfigurable FPGA applications: 
§  to define a design flow that exploits, wherever possible, 

the commercial tools available  
§  to provide guidelines on the identification and definition of 

reconfigurable cores 
§  to define the modules schedule trying to reduce the 

reconfiguration time 
§  to increase the system performances and to reduce the 

number of bitstreams to store in memory for 
reconfiguration  
•  using the runtime bistreams relocation technique 

§  to manage the runtime swap of reconfigurable cores 
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From Classical Systems…
Behavioral evolution 
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… to Self-Aware and Adaptive Ones
Self aware systems learn how they can be used to 

address a particular problem and adapt their 
structure towards it
" Respond to user goals 
" Build self-performance models
" Adapt to changing goals, resources, models, operating 

conditions
" Identify what they need to learn
" Gracefully adapt to failures
" Optimize their own behavior 
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Structural 

modification



Adaptive Vs Online Static Solutions - 1st run

Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution
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Adaptive Vs Online Static Solutions – 2nd run

Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution
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Reconfiguration: Online Static

5353



Reconfiguration: Self-Aware

5454



Questions 
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