
DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE

Novel,
Emerging
Computing System Technologies

FPGA: back to the future in the
reconfigurable computing domain

Marco D. Santambrogio
marco.santambrogio@polimi.it

16 Maggio, 2014  
Politecnico di Milano  

POuL, C.I.1

Reconfiguration

 The process of physically altering the location or
functionality of network or system elements.
Automatic configuration describes the way
sophisticated networks can readjust themselves
in the event of a link or device failing, enabling
the network to continue operation.

Gerald Estrin, 1960

2

Outline

•  A bird’s eye view on the
Reconfigurable Computing

•  FPGA

•  The roadmap

•  What’s missing

3

What’s next

•  A bird’s eye view on the Reconfigurable
Computing
§  The RC dawn and the FPGA revolution
§  Some !FPGA architecture
§  The accademic efforts
§  Choose the optimal hardware platform for

a given application

•  FPGA
•  The roadmap
•  What’s missing

4

Reconfigurable Computing

Processor

Rec Computing

Full Custom

Compilation time

Performance

low

high

low high

5

Reconfigurable Computing

 Reconfigurable computing is defined as the study
of computation using reconfigurable devices

 Christophe Bobda, 2007

Processor

Rec Computing

Full Custom

Compilation time

Performance

low

high

low high

6

Such a definition!

7

8

The RC Dawn

•  The Estrin Fix-Plus Machine, 1959
•  The Ramming Machine, 1977
•  Hartenstein’s XPuter, 1980

•  mid-1980s: the FPGA revolution/era
§  The PAM Machine, SPLASH II, PRISM,

Garp, DISC, DPGA

9

Data Flow Machine (!FPGA)

•  The Pact XPP Device
•  The NEC-DRP Architecture
•  The picoChip Reconfigurable Device

•  PicoChip solution:
§  Array of heterogeneous processors
§  Communication flexibility between processors achieved through

reconfigurable technology

Array Processing Element

Switch Matrix

Inter-picoArray Interface

10

The Academic Efforts

•  The Reconfigurable Architecture
Workstation (RAW) - MIT

•  The Matrix Architecture - MIT
•  The Reconfigurable Multimedia Array

Coprocessor (REMARC) - Stanford
•  MorphoSys - University of California,

Irvine
•  Chimaera – Northwestern
•  PipeRench - CMU
•  RaPiD - University of Washington
•  Garp – UC Berkeley
•  Bee2- UC Berkeley

What are the drivers for this choice?

•  Time: How long does it take to compute the
answer?

•  Area: How much silicon space is required to
determined the answer?

•  Costs: How much does it costs (performance, $)?
•  Power: How much does it consume?

•  Processor generally fixes computing area. Problem
evaluated over time through instructions.

•  FPGA can create flexible amount of computing
area. Effectively, the configuration memory is the
computing instruction.
§  Flexibility means variety, which means different kinds

of reconfiguration

11

Reconfiguration in everyday life

Soccer

Hockey

Football
(Complete – Static)

(Partial – Dynamic)

(Partial – Static)

12

Reconfigurable Architectures Characterization

•  SoC (System on Chip)
§  Embedded Vs External
§  Complete Vs Partial
§  Dynamic VS Static

•  SoMC (System on Multipe-
Chip)
§  Embedded Vs External
§  Complete Vs Partial
§  Dynamic VS Static

s
t
a
t
i
c

Partial Complete Embedded

Complete/Partial Who

(a) (b) (c) (d)

13

Reconfiguration: some applicative scenarios

Behavioral evolution

14

Structural

modification

15

•  A bird’s eye view on the Reconfigurable
Computing

•  FPGA
§  Technology
§  CLB, Slice, LUT
§  Frame
§  Configuration bitstream

•  The roadmap
•  What’s missing

What’s next

Commercial FPGA Companies

Lattice official webiste

16

17

Xilinx FPGA technology

17

IOB IOB IOB IOB

CLB CLB

CLB CLB
IO
B

IO
B

IO
B

IO
B

Wiring Channels

Xilinx Programmable Gate Arrays

•  CLB - Configurable Logic
Block

•  Built-in fast carry logic
•  Can be used as memory
•  Three types of routing

§  direct
§  general-purpose
§  long lines of various

lengths
•  RAM-programmable

§  can be reconfigured

18

18

Configurable Logic Blocks

•  CLBs made of Slices
§  sVirtex-E 2-slice
§  VIIP 4-slice

•  Slices made of LookUp Tables (LUTs)

•  LookUp Tables
§  4-input, 1 output functions
§ Newest FPGA 2 6-input 2 output

19

Simplified CLB Structure

Look-Up
Table
(LUT)

Q

QSET

CLR

D
MUX

CLB

20

20

Lookup Tables: LUTs

•  LUT contains Memory Cells to implement small
logic functions

•  Each cell holds ‘0’ or ‘1’ .
•  Programmed with outputs of Truth Table
•  Inputs select content of one of the cells as output

16-bit SR

flip-flop

clock

mux
y

q
e

a
b
c
d

16x1 RAM
4-input

LUT

clock enable

set/reset

3 Inputs LUT -> 8 Memory Cells!

SRAM

Static Random Access Memory!
SRAM cells!SRAM

3 – 6 Inputs!

Multiplexer MUX!

21

Example: 4-input AND gate

A
B

C

D

O

A B C D O

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

Q

QSET

CLR

D
MUXA

B

C

D

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

Configuration bits

O

0

22

The Virtex CLB

2-Slice Virtex-E CLB

23

Details of One Virtex Slice

Virtex-E Slice

Implements any Two 4-input Functions

4-input
function

3-input
function;

registered

Virtex-E Slice
25

CLB

Switch Box
SLICE

TBUF

Y

X6766

75

74

SLICE_X66Y74

4-Slice VIIP CLB

26

Interconnection Network

CLB SB

SB SB

CLB

SB

CLB SB CLB
Configurable Logic Blocks

Interconnection Network

I/O Signals (Pins)

Configuration
bits 1

0

0

0
0

0

27

Example

CLB0 SB0

SB1 SB2

CLB1

SB3

CLB2 SB4 CLB3

Input1

Input2

Output
Input3

•  Determine the configuration bits for the following circuit
implementation in a 2x2 FPGA, with I/O constraints as shown
in the following figure. Assume 2-input LUTs in each CLB.

Q

QSET

CLR

D
Input1
Input2

Input3

Output

28

CLBs configuration

Q

QSET

CLR

D
Input1
Input2

Input3

Output

CLB 1 CLB 2

Q

QSET

CLR

D
MUX

Input1
Input2

0

0

0

1

Configuration bits

O

1 Q

QSET

CLR

D
MUX

O
Input3

0

1

1

0

Configuration bits

Output

0

29
29

Placement: Select CLBs

CLB0 SB0

SB1 SB2

CLB1

SB3

CLB2 SB4 CLB3

Input1

Input2

Output
Input3

30

Routing: Select path

CLB0 SB0

SB1 SB2

CLB1

SB3

CLB2 SB4 CLB3

Input1

Input2

Output
Input3

Configuration bits

SB1

1

0

0

0
0

0

Configuration bits

SB4

0

0

0

0
1

0

31

Configuration Bitstream

•  The configuration bitstream must include ALL
CLBs and SBs, even unused ones

•  CLB0: 00011
•  CLB1: ?????
•  CLB2: 01100
•  CLB3: XXXXX
•  SB0: 000000
•  SB1: 000010
•  SB2: 000000
•  SB3: 000000
•  SB4: 000001

32

The configuration bitstream

•  Occupation must be determined only on
the basis of
§  Number of configuration words
§  Initial Frame Address Register (FAR) value

33

34

Frame and Configuration Memory

•  Virtex-II Pro
§  Configuration memory is arranged in vertical

frames that are one bit wide and stretch from
the top edge of the device to the bottom

§  Frames are the smallest addressable segments
of the VIIP configuration memory space
•  all operations must act on whole configuration frames.

"   Virtex-4
"   Configuration memory is arranged in

frames that are tiled about the device
"   Frames are the smallest addressable

segments of the V4 configuration
memory space
"   all operations must therefore act upon

whole configuration frames

Some Definitions
•  Object Code: the executable active physical (either

HW or SW) implementation of a given functionality

•  Core: a specific representation of a functionality. It is

possible, for example, to have a core described in
VHDL, in C or in an intermediate representation (e.g.
a DFG)

•  IP-Core: a core described using a HD Language
combined with its communication infrastructure (i.e.
the bus interface)

•  Reconfigurable Functional Unit: an IP-Core that can
be plugged and/or unplugged at runtime in an
already working architecture

•  Reconfigurable Region: a portion of the device area

used to implement a reconfigurable core

35

Xilinx FPGA and Configuration Memory

36

What’s next

•  A bird’s eye view on the Reconfigurable
Computing

•  FPGA

•  The roadmap

§  The 90% – 10% Rule
§  Programmable System on a Chip
§  Multi-FPGA
§  Complex heterogeneous adaptive systems

•  What’s missing

37

The 90% – 10% Rule

•  90% of the execution is spent in 10% of the code
§  Inner loops in algorithms
§  Computational intense code

•  10% of the execution is spent in 90% of the code
§  Exceptions
§  User interaction

•  The 10% computational intense code has to be
executed as hardware on reconfigurable devices

•  The 90% exception code is run as executable files
on processors

38

Programmable System on a Chip

•  No longer just a bunch of reconfigurable elements

•  DSPs, GPP, reconfigurable elements, etc. etc...

39

Heterogeneous Multi-FPGA System

40

Complex heterogeneous adaptive systems

•  Due to the complexity in the demand, the
system has to be heterogeneous and able to
autonomously adapt and evolve
§  FPGAs
§  DSPs
§  GPP (Multi-cores)

•  Adaptive systems learn how they can be used
to address a particular problem
§  Respond to user goals
§  Build self-performance models
§  Identify what they needs to learn
§  Adapt to changing goals, resources, models,

operating conditions
§  Gracefully adapt to failures
§  Optimize their own behavior

41

Intel Stellarton

•  Heterogeneous Multicore
§  An Intel Atom E6XX processor

•  # Cores: 1
•  # Threads: 2
•  L2 Cache: 512 KB

§  An Altera Field Programmable Gate Array

42 42

What’s next

•  Basic Idea
•  FPGA
•  The roadmap

•  What’s missing
§  Design methodologies
§  Runtime reconfiguration management
§  Rationale behind DRESD

43

Design flow

•  Dynamic reconfigurable embedded systems
are gathering, an increasing interest from both
the scientific and the industrial world
§  The need of a comprehensive framework which

can guide designers through the whole
implementation process is becoming stronger

•  There are several techniques to exploit partial
reconfiguration, but..
§  Few approaches for frameworks and tools to

design dynamically reconfigurable systems
§  They don’t take into consideration both the HW

and the SW side of the final architecture
§  They are not able to support different devices
§  They cannot be used to design systems with

different architectural solutions

44

No EDA support

•  To identify from an high-level or RT-Level
specification how to define reconfigurable
functional units

•  To define which IP-Core has to become a
reconfigurable functional unit

•  To define interconnections among
reconfigurable functional units

•  To manage at runtime the swap of
reconfigurable functional units

•  To perform the actual swap of reconfigurable
functional units and the FPGA reconfiguration

45

Runtime Reconfiguration Management

•  The flexibility of a reconfigurable system
comes from the possibility of downloading
different hardware configurations onto the
chip at different times
§  Reconfiguration time overhead
§  Memory usage to store the bitstreams

•  There are different models of reconfiguration
classified according to the following scheme
(5W):
§  who manages the reconfiguration
§  where the reconfiguration controller is located
§  when the configurations are generated
§  which is the granularity of the reconfiguration
§  what dimension (1D vs 2D) the reconfiguration operates

46

DRESD

47

Goals

•  Exploit dynamic reconfigurability for different target
reconfigurable architectures.

•  Definition of a complete design flow (Brain to Bit) to process a
specification to make it suitable for reconfigurable
implementation

•  Definition and implementation of a new generation of self
reconfigurable architectures based on Linux

•  Increase the reconfiguration performances via novel techniques,
i.e. runtime reconfigurable cores relocation, reconfigurable cores
identification, reconfigurable cores reuse

48

DRESD: innovative contributions

•  Definition of a methodology for the design of dynamically
reconfigurable FPGA applications:
§  to define a design flow that exploits, wherever possible,

the commercial tools available
§  to provide guidelines on the identification and definition of

reconfigurable cores
§  to define the modules schedule trying to reduce the

reconfiguration time
§  to increase the system performances and to reduce the

number of bitstreams to store in memory for
reconfiguration
•  using the runtime bistreams relocation technique

§  to manage the runtime swap of reconfigurable cores

49

From Classical Systems…
Behavioral evolution

50

… to Self-Aware and Adaptive Ones
Self aware systems learn how they can be used to

address a particular problem and adapt their
structure towards it
" Respond to user goals
" Build self-performance models
" Adapt to changing goals, resources, models, operating

conditions
" Identify what they need to learn
" Gracefully adapt to failures
" Optimize their own behavior

50

Structural

modification

Adaptive Vs Online Static Solutions - 1st run

Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution

51

Adaptive Vs Online Static Solutions – 2nd run

Data DataEnvironment Environment

Output - Environment Update
Output - Environment Update

Online Static Solution Adaptive Solution

52

Reconfiguration: Online Static

5353

Reconfiguration: Self-Aware

5454

Questions

55

